Toh Jing Hua
Toh Jing Hua
Hi there, I'm Jing Hua! πŸ‘‹πŸ»
  • πŸ“š Business and Computer Science sophomore (first class honours + dean's list)
  • πŸ’¬ English(en) δΈ­ζ–‡(zh) ζ—₯本θͺž(ja) Svenska(sv) EspaΓ±ol(es)
  • 🌐 Full-stack web (React + Django/NodeJS + SQL)
  • 🧠 Deep Learning + NLP + CV
  • πŸ’• Opensource
  • πŸ‘©β€πŸ’» 4 software engineer internship experience
  • πŸ† 2x hackathon champion + 1x most innovative
  • πŸ˜‡ Volunteer frontend web developer at TransgenderSG
Github
LinkedIn
Blog

What I've built

ByteVid - Deep Learning Hackathon 1st Place
ByteVid - Deep Learning Hackathon 1st Place
ByteVid - Deep Learning Hackathon 1st Place
  • Developed for NTU MLDA Deep Learning Week Hackathon in 48 hours (1/10/2022 - 3/10/2022).
  • Achieved 1st place out of 120 teams.
  • Detailed explanation of our solution: https://me.tjh.sg/blog/bytevid

Project Description

Say goodbye to long and boring videos! πŸ‘‹

Powered by the cutting-edge deep learning technologies in 2022, ByteVid transforms long, boring videos into fun byte-sized content.

Be it a one hour long lecture, or a 30-minute zoom meeting, ByteVid can transcribe, summarise the content, extract keywords, detect and extract important slides from the video, and translate into other languages.

Deep Learning

  • Whisper: SOTA speech recognition (Sep 2022)
  • YOLOv7: SOTA object detection (Jul 2022)
  • KBIR-inspec: key phrase extraction (Dec 2021)
  • Bert Extractive Summarizer: summarisation (Jun 2019)
  • BlingFire: sentence extraction
  • Baidu Translate API: translation

Frontend

  • React.js
  • Tailwind CSS
  • Deploy on GitHub pages

Backend

  • Flask server
  • Deploy on a GPU machine
  • Relay to an Internet-facing VPS
  • Nginx reverse proxy
  • Cloudflare protection

Tools

  • OpenCV
  • youtube-dl
  • ffmpeg
TraViS - Transformer Attention Visualiser
TraViS - Transformer Attention Visualiser
TraViS - Transformer Attention Visualiser
  • Developed a mobile-responsive web app that visualises the attention mechanism of Transformer-based model (BERT) in HTML, CSS, JavaScript, and D3.js
  • Executed the BERT model directly in browser (client-side)
  • Received more than 28 stars on the GitHub repository
Word Piece Tokenizer
Word Piece Tokenizer
Word Piece Tokenizer
  • Developed a Python library that implements a modified, lightweight version of HuggingFace BERT Tokenizer in pure Python
  • My tokenizer can maintain high performance in resource-limited devices like embedded systems and web browsers
  • My tokenizer is 57% faster than the original HuggingFace BERT Tokenizer
More

Experience